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Abstract. An analytical study of the photon echoes associated with the three-level system 
interacting resonantly with optical pulses possessing two different frequencies is performed. 
It is predicted that photon echoes arise at anomalous times corresponding to the correlation 
between the inhomogeneous broadenings for the different spectral lines, as well as at the 
normal time expected in a simple two-level system. This new effect is caused by the coupling 
of the two resonant transitions through the common energy level. Furthermore, if the 
particle does not have inversion symmetry, the echoes with the sum or difference frequency 
of the exciting optical pulses can be observed in such a system. The quantitative analysis is 
also given for intensities, direction of propagation and polarizations of the anomalous echoes 
which depend upon the exciting pulses with different frequency. 

1. Introduction 

The coherent interaction in a resonant nature between a many-particle system and 
optical waves has attracted new interest recently with the advent of coherent ultra-short 
light pulse techniques. In the case of the coherent and intense optical pulse shorter 
than the homogeneous relaxation time interacting with the many-particle quantum 
system, the change of the wavefunction caused by the interaction is so large that 
ordinary perturbation theory is no longer valid, and the dynamical interaction described 
by the exact treatment must be considered. At the same time, the coherence of the 
system plays an essential role in such a problem, since the phase memory of the wave- 
function for each particle is maintained during the interaction. 

This feature is primarily revealed by the photon echo (Abella et a1 1966, Gordon et a1 
1969), the self-induced transparency (McCall and Hahn 1969, Lamb 1971) and the optical 
nutation (Tang and Silverman 1966) known as the new optical phenomena, and in 
particular, the photon echo is noteworthy as the typical example for the super-radiance 
(Bonifacio et a1 1971a, b) first analysed by Dicke (1954). 

However, studies of these phenomena have been mostly confined to those associated 
with the two-level system, that is, only the single frequency takes part in the problem. 
With respect to the problem where the optical waves with different frequencies are 
concerned, some theoretical approaches to the photon echo were carried out by 
Hartmann (1968), Nagibarov and Solvarov (1970), Tanno et a1 (1970) and Courtens 
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(1972). However, besides the Raman echo, these analyses did not take proper considera- 
tion of the correlation between the inhomogeneous broadenings for the different spectral 
lines. Even in the case of a three-level system, all possible transitions couple with each 
other because the raising or lowering operators for different transitions do not commute, 
and then photon echoes are formed at anomalous times, besides the normal time as 
expected from the usual analysis in the two-level system, depending upon correlation 
between the inhomogeneities of the different spectral lines. Furthermore, for the particle 
lacking inversion symmetry, we can expect echoes with the sum or difference frequencies 
of the exciting pulses caused by the nonlinearity which the three-level system possesses 
originally. 

In this paper, we present the first part of the theoretical studies on the doubly resonant 
photon echoes in a three-level system using the density operator, in order to derive 
quantitatively their intensities, polarization characteristics and the propagation direc- 
tions. Analytical descriptions are given in connection with not only the ordinary echoes 
corresponding to twice the time interval between successively applied excitation pulses, 
but also the anomalous echoes inherent to the coherent three-level system. 

2. Equation of motion for the density operator in a three-level system 

We can consider the system composed of many particles with three energy levels, which 
interact with coherent electromagnetic waves. The first problem to be considered is a 
system whose dimensions are small compared with the electromagnetic wavelengths. 
When dealing with this system, we must make use of the density operator for the whole 
system, since the photon echoes are the phenomena inherent to the many-particle 
system. However, if the distances between the particles are so large that the interaction 
between particles is negligible, the Liouville equation for the whole system can be 
separated into the equations for the individual particles. Then the density operator for 
the whole system can be obtained as the direct product of the individual particle density 
operators. Therefore, the starting point of our analysis is to solve the one-particle 
problem. 

In this paper, we consider the case where the system is irradiated simultaneously by 
two coherent lights whose frequencies wba and 0 , b  are resonant at the centre frequencies 
of the inhomogeneously broadened spectral lines (figure 1). Since the dimensions of the 
system are small compared with the wavelength, the spatial dependence of the radiation 
fields can be omitted, and therefore the electric fields of the linearly polarized incident 
light can be described as 

E,,(?) = 2E,,,(t)(icos S,,+jsin S,,)cos w~ 

= E,,,(?) {i cos(o,,t + d,,) +j sin(w,,t + d,,)} + E,,,(t) { i cos( - wPvt + s,,) 
+ j sin( - wpvt + Spv) } .  (1) 

where subscript pv denotes ba and cb, wpv is the frequency of the incident lights, i and j 
are the unit vectors along the spatial coordinate common to all particles, S,, is the angle 
between the directions of i and the incident electric fields, and E,,,(t) is its envelope 
function. Equation (1) shows that the linearly polarized light can be expressed by the 
superposition of the right- and left-hand circularly polarized lights, and these are 
convenient for deriving the echo formula. 
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Figure 1. Schematic diagram of three-level system for thejth particle. Incident optical pulses 
with frequencies cob. and oCb are off-resonant because the energy levels are broadened inhomo- 
geneously around the centre frequencies R,,, and Rcbo, respectively. 

The hamiltonian for a three-level system interacting with common radiation fields 
expressed by equation (1) can be written as 

H = H0+Hb,+H:, (2) 

Here Ppv is the magnitude of the matrix element of the electric dipole moment operator 
with respect to the transitions a-b and b-c, and Rpyl and Rpv2 are the Dicke operators 
for each transition, where the subscript to distinguish individual particles is omitted in 
order not to overburden the notation. These operators take the following forms in terms 
of the energy eigenstates : 

L L 

Parameters U and v are taken to be U = 1, U = -i for a Q +  transition, and U = 1 and 
U = i for a Q- transition. It is convenient to introduce the raising and lowering operators 
for each transition defined by 

Rpvf = Rpv1+iRpv2. (6)  

Then the interaction part of the hamiltonian given by equation (4) can be rewritten as 

1 
HIv = - - ~ p y q t v o ( ~ )  &,+ exp(-id,,)+ Rpv- exp(id,,)) {exp( iqJ)+  exp(-iqivt)).(7) Jz 
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A particle occupying three energy levels is generally described by a density operator 
o(t) which satisfies the equation of motion 

It is convenient here to transform the density operator o(t) in the Schrodinger picture into 
the intermediate picture, but not the interaction picture, as follows : 

p(t) = exp(iSt)a(t) exp( - iSt), 

where 

= ocblc) (cl - Obala) ( a l .  
This unitary transformation leads to the equation of motion for p(t)  

dp(t) ih- = [hA+ H ; .  p(t) ] .  
dt 

where 

hA = H o - h S ,  

H i  = exp(iSt)(Hb, + Hib)  exp( - iSt). 

Also A is diagonal in the energy representation with the eigenvalues Aw,, = Cl,, - CO,,,, 
and these values represent the measure of off-resonance between the incident radiation 
and the individual particle with transition frequency R,, due to the inhomogeneous 
broadening of the spectral lines. 

We should notice that equation (11) corresponds to the equation of motion in the 
rotating frame in the classical model, being used in the interpretation of spin as well as 
photon echoes in a two-level system. However, in the case of the three-level system, S 
represents the operator in the three-dimensional Hilbert space and contains the two 
different angular frequencies o b o  and web. 

In order to calculate equation (13), we have to derive the expression of R,, * in the new 
representation, as follows : 

1 
~ , v ~ , v o ( ~ ) ~ ( u , v  + iU,J exp( - i8,J + (Upv - iU,J exp(i~,,)) eiStH;v e - iSt = 

2 J z  
x { 1 + exp(2iw,,t)}\p) ( V I  +hermitian adjoint. (15) 

We now make the rotating wave approximation, that is, we neglect the second term in the 
second braces in the above equation, which changes twice as rapidly as the radiation 
frequencies, since the component of&) with slow time dependence compared too;,' is of 
interest in our problem. This approximation means that, for the a, (a-) transition, only 
the first (second) term in equation (1) interacts with them. 
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First we consider the case where the transition a-b is C Y + ,  and transition b-c is CY- .  

Hence, equations (16) and (17) become simply 

e i S r ~ f  ,-iSr - 1 

4 - --pcbEcbO(t)(eXP(iscb)lC) (b\  + exp(-iScb)lb) (cl}. (17) cb 

Introducing the operator T defined by 

= -Sbala) ( a l  -6cblc) (cl, (18) 

equations (16) and (17) are combined, then the interaction hamiltonian in the inter- 
mediate picture takes the form 

= e-iT{ -$PbaEboO(t)Rbol -$PcbEcbO(t)Rcbl} eiT. (19) 

3. Solution of the equation of motion for the density operator in a three-level system 

In the previous section we have derived the equation of motion for the density operator 
which describes the dynamical behaviour of the particle occupying the three energy 
levels and interacting simultaneously with the incident waves whose frequencies are 
resonant to the line centre for each transition. We will try to solve the equation for the 
case where the system is excited by intense coherent optical pulses. For sufficiently 
intense exciting pulses it can be assumed that the off-resonance effect due to the inhomo- 
geneous broadening of the spectral lines may be much smaller than the time evolution of 
the system caused by the interaction described by H i .  Consequently, we ignore A during 
the duration of optical pulses to obtain 

In the period of absence of optical pulses, we have 

If we put EcbO(t) = kEb,,(t), where k is an arbitrary time-independent constant, equation 
(20) can be solved exactly. This condition can be nearly achieved experimentally as 
follows : The N, laser beam, for example, is divided into two beams by a beam splitter in 
order to pump the two dye lasers which are tuned independently. The case where this 
condition is violated will be considered later. 

For the optical pulses lasting from to to to + 7, the exact solution is expressed by 

= exp[e-iT{i(6Rb,l + 4RCbl)} eiT]p(to) exp[e-iT{ -i(6Rba1 + 4 ~ ~ ~ ~ ) )  eiT] 

= e- iT  exp{i(6Rb,, + 4Rcbl)j eiTp(to) e-iT exp{ -i(6Rba1 + 4Rcbl)} eiT, (22) 
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where 

One should note that, if EbaO(t) /EcbO(t)  depends on time, solution (22) is no longer valid 
because of the fact that the unequal-time commutator bracket of Hi does not vanish. 

It is convenient to introduce the unitary operator 

8 0  80  1 
I/ = --la> (a1 -4ola) (bl +-la> (cl --lb) (a1 t/z Jz Jz 

1 40 4 0  +-lb)(cl +-IC> ( 4  +8olc) (bl +-IC> (cl Jz Jz 4 
to rewrite equation (22) 

p(ro+r)  = e-iTI/exp{+it,b(-Ja)(al +Jc)(cl))V+ eiTp(to) 

x e-iTl/exp{ -+itJ(-la)(al +lc)(cl)}I/+ eiT 

where IC/ = (8' + # J 2 ) ' I 2 ,  8, = 8/(02 + $2)1/2  and +o = +/(e2 +42)112. On the other hand, 
equation (21) can be solved simply as 

(25) 

Since unitary operator exp{ -iA(t- r ' ) }  is diagonal, before or after the applied pulses 
the diagonal elements of p(t)  do not change and their off-diagonal elements change their 
phase with time at  a different rate for each particle because the individual particles have 
the different eigenvalues of the off-resonance operator A. 

p(t)  = exp{ -iA(t-r'))p(t') exp{iA(t-t')). 

4. Matrix elements of the density operator for discussion of the photon echoes associated 
with a three-level system 

We consider the system irradiated by a sequence of two simultaneous optical pulses 
with different frequencies o b .  and Wcb separated by the same time interval T , ,  as shown in 
figure 2. Using the solutions (24) and (25), we derive the expression ofthe density operator 
at the time t > T, ,  as follows : 

p(t)  = Up(O)U+.  (26) 
Here the unitary operator U takes the form 

x exp( -%) e-iTI/exp{fitJ(- la> <a1 + IC> (cl)) I/+ e'', (27) 

where the prime on operators denotes those for second pulses. Here we suppose that all 
particles are initially in the ground state la), that is, p(0) = la)  (al. 
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n 

t : o  t =rs 

Figure 2. Schematic representation of two pulse sequencies with the frequencies wbo and wCb 
resonant to the transitions a-b and b-c in the three-level system, respectively. 

We calculate the matrix elements of p(t)  in the energy representation. The diagonal 
elements of U take the form 

and the off-diagonal elements are given by 

The matrix element of U can be calculated from equation (27), as follows : 

where the relation ~ a ) ( a ~ + ~ b ) ( b ~ + ( c ) ( c ~  = I ( I  is the unit operator in the three- 
dimensional Hilbert space) was used. Substitution of equations (30aH30c) into equation 



1716 M Aihara and H Znaba 



Photon echoes in a resonant three-level system 1717 

and we omitted the terms which do not contribute to the echo formation. As will be 
apparent in the next section, the off-diagonal elements of the density operator obtained 
above correspond directly to the expectation values of the electric-dipole moment 
operator, so that they determine the characteristics of the photon echoes. On the other 
hand, the diagonal elements are not essential in our problem. The physical meaning of fl  
in equations (31aH32t) will also become apparent in the next section. 

One should note that equations (31a), (31b) suggest that the photon echo is produced 
not only at t = 2rs, that is, normal time, but also at several anomalous times which 
depend on the ratio Aoba/Aocb.  In the case where exciting pulses are exactly resonant at 
the centres of the inhomogeneously broadened lines, Ao,, can be written approximately 

Ao,,, = a,,x (32) 

where x is the physical parameter determined by taking account of the cause of the 
inhomogeneous broadening of lines. For example, in the case of gases, x describes 
the component of the velocity of a particle along the line of sight, and in the case ofsolids, 
the deviation of the crystalline field at the position of the particle from its mean value. 
Moreover, in gases, the coefficients aba and tLcb in equation (32) can be written simply as 
aba  = Rba0/c and acb = RcbO/C, where is the centre frequency and c is the light 
velocity. However, in solids, i t  is to be noted that such simple relations do not hold, 
and aba and can even take negative values in some cases. 

5. Intensity and polarization characteristics of photon echoes 

In this section we consider the echo intensity and polarization for the case where each 
energy level has twofold degeneracy and the exciting pulses are perpendicular to the 
quantization axis. In this case, the interaction process is described by the superposition 
of the two independent sets of transitions as shown in figure 3. This situation can be 
achieved by using, for example, the transitions n2Sli2 -n’2P1,2 -n”’S1/, (or -n”2D1,2) 
of an alkali vapour or those between the Kramers doublets of R and B lines of the ruby 
crystal. 

Figure 3. Schematic representation of the three-level system where each level has twofold 
degeneracy. Full and broken lines show the two independent sets of transitions caused by 
the linearly polarized radiation perpendicular to the quantization axis. 
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IF order to find the echo intensity and polarization, we have to obtain the expectation 
values of the electric-dipole moment operators for each transition and to integrate them 
over the inhomogeneous broadenings of the spectral lines. When performing this, one 
should note that the two off-resonance parameters Ambo and Amcb take part in the prob- 
lem unlike the conventional two-level system. However, Amba and Amcb are not indepen- 
dent from each other, and are related to the physical parameter x causing the inhomo- 
geneous broadening as shown in equation (32). Therefore, the total electric-dipole 
moment exhibited by an ensemble of particles is expressed by 

where N is the number of particles and g(x) is a distribution function for x. It is to be 
noted that the electric-dipole moment at the frequency w,, is polarized along the quanti- 
zation axis, that is, perpendicular to the direction of the electric fields of the excitation 
pulses. Accordingly, our interest is only limited to evaluating equation (33) for the 
dipole moments with frequencies o b o  and web. 

We have already obtained the matrix elements of the density operator, (alplb) and 
(blplc), for the set of transitions shown by the full lines in figure 3. In the same fashion 
we canalso obtain those for the broken lines in figure 3. Substituting the density operator 
for each set of transitions into equation (33) independently, and superposing these 
results, we obtain 

@bo) = f i p b Q N [  - A2~sA;~sG(aba( t  - 2 T s ) )  fi cos(26bo - 6ba) +j  - 6bo)} 

S A ( *  +P)TsA;2+P)TsG(aba{t - ( 2 + ~ ) s , } )  {icos(26b,-6b,-6:b+6cb) 

+jsin(26b,-6bu-6;b+6cb)} +fl)fsAil +p)r,G(abo{r-(l + f l ) r s ) )  

( i c o s ( 6 b , + 6 c b - 6 : b ) + j s i n ( b b , + 6 c b - 6 : b ) } + A , l  - P ) T s A ; l  -fl)rs 

x G(Mb,{ t - (1 - f l ) r , } )  { i cos(db, + 6:b - deb) + j  sin(& + s i b  - 6,b)} 

+ A - pr,Alpr,G(Qba(t + firs)) (i c0s(6b, + 6Lb - 6cb) +j + s:b - 6cb)}l 

x sin cob,&, (344 
and 

@,b) = \/ZPCbN[ - B,,B;,G{ acb(t - h,)} { i cos(26:b - 6,b) + j  sin(26:b - 6&)} 

+ '(2 + D -  1)~,';2 + P -  l)TsG(acb{t - ( 2  + 8- 'lTs}) {i c0s(26:b- 6cb- 66, + a b , )  

+j - 6cb - 6ba + + B(l + 0 -  l)rs':l + p' 1)rSG(@cb{l - ( l  + f l -  'ITS}) 
{icos(6:b+6b,-6b,)+jsin(6:b+6b,-6b,)) - k B ( ,  - P - L ) T ~ ' ; ~  - 0 - 1 ) ~ ~  

x G(acb{ t - (1 - f l -  ')TS}) {i cos(b:b + 6& - a b o )  +j  sin(& + 6;, - ab,)} 

+ B-p - lTs'Lfi- lr,G(Clcb(t + 1.3- ' rS ) )  { i  coS(6,b + 6b, - db,) 

+j  sin(bcb + S &  - ab,)}] sin u c b t ,  (34b) 

where f l  = C(cb/ab,. As is evident from the above equations, the shapes of echoes are 
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expressed by the Fourier transform of the distribution function of x, which is given by 

G(5) = Jy g(x) e-'" dx. 
X 

From equations (34a) and (346), we obtained the remarkable results that the photon 
echoes are also produced at some anomalous times different from t = 27,. Equation 
(34a) shows that the two anomalous echoes with frequency wba arise depending upon the 
following three cases : (i) in the case of /3 > 0, echoes appear at  (2 + P)r, and (1 + p ) ~ , ,  
besides at 2r,; (ii) in the case of - 1 < p < 0, echoes appear at 22,, (2 - IBl)r,and (1 + Ipl)~,: 
and (iii) in the case of p < - 1, echoes arise at 2r,, (1 + Ipl)~, and Iplz,. Equation (34b) 
shows that the two anomalous echoes with frequency wcb also appear : (i) in the case of 
p > 0, echoes appear at 2t,, (2 + f l -  ' ) T ,  and (1 + p- ' ) T ,  ; (ii) in the case of - 1 < p < 0, 
echoes appear at 2rS, (2-lj3I-')rs and ( 1  +IjI-')r,; (iii) in the case of fl  < - 1, echoes 
appear at 2t,, (1  +IpJ-')r, and Ipl-'~,. 

As mentioned previously, in the case where the inhomogeneous broadening is caused 
by the Doppler effect as in gases, only the first case is possible and the time when the 
echo arises is essentially determined by the ratio of energy separations since the relation 
p = QbcO/QbaO holds. However, in solids, where the spatial fluctuation of the static 
crystalline field gives rise to the inhomogeneous broadening of energy levels, the varia- 
tion of the energy eigenvalues with the magnitude of the crystalline field is complicated 
depending upon not only the electron configuration but the configuration interaction. 
Consequently, the echoes are produced at times different from the case of gases even if 
the ratio of the energy separations f l c b O / f l b a O  is the same. It is pointed out here for the 
first time, as far as we know, that this interesting feature in photon echoes is inherent to 
the three-level system, and can be explained as the effect caused by coherent coupling 
between the two transitions a-b and b-c. The detailed discussion of this feature will be 
made later. 

We now consider the case that the limitation E c b O ( t )  = kEb,O(t) does not exist. In such 
a case we can not obtain the analytic expression, and the results on the intensity and 
polarization characteristics of echoes can be obtained only by numerical integration. 
One should, however, note that our results on times when echoes arise are still valid, since 
they are determined only by p. 

Furthermore, if the particle does not possess the inversion symmetry, echoes with the 
sum frequency wc, = O b o +  can be produced by considering the case where all three 
transitions are II transitions. Then the result is given by 

+,a> = J Z p c a ~ [  - ~ 2 r , ~ ; r , ~ ( a c a ( t  - 27s)) + C( 1 + ( 1  + 0) ')r,C; 1 + (1 + 8 ) -  1 ) r S  

x G(aca[t - { 1 + (1  + P)- ' j ~ s I  + '(1 + ( 1  + p -  1)-  l ) r s C [ l  + ( 1  + p - l ) -  L)r, 

x G(aca[t - { 1 + (1 + 8- ')- ' } T ~ I )  + c ( 1 +  p ) -  17,C; 1 + p ) -  l r s  

x G(a,,{t-(l +p-')-'}r,)]k sinwcat, ( 3 5 )  

G[aca{ + p)- 'Ts}lG(aca{t - ( l  +p)- "s}) + c ( l  + b - ' ) -  l r s c i l  +/j- 1 ) -  l r s  

where 
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To summarize the results on the intensity characteristics, table 1 shows the times of 
echo formation and the maximum intensities of the echoes at the frequencies uba, uCb and 
coca, depending upon the three cases as mentioned before. Figures 4(aHd)  show some 
examples of the squared value of the coefficients A ,  B and C (A’, B’, and C’) which indicate 
how the intensity of the echoes depends on the exciting pulse areas 8 and $ (8’ and $’) for 
the first (second) pulses. We notice here that some of these coefficients have the same 
functional dependence or become identical by exchanging 8 and $, or 8’ and $‘, and thus 
only eight coeEcients are found to be independent. Various intensity characteristics of the 
echo radiation involved in the three-level system can be found based on our analysis. For 
instance, figure 4(a) shows that the periodicity of the echo intensity collapses for the 
case of 4 # 0. Especially, the combination of the 8 = 371 pulse and the 4 = 1.771 
pulse induces the echo at the frequency uba which can not be expected for the 371 pulse 
only in the simple two-level system, and its intensity becomes almost the same as 
the maximum value of the normal echo at t = 2 ~ , .  

Table 1. Maximum values of the photon echo intensity with the frequencies oh, CO,) and w,, 
associated with a resonant three-level system being classified into three cases according to the 
value ofp. p = aCb/abais the parameter indicating thecorrelation between the inhomogeneous 
broadenings of the different spectral lines, and determines the times when echo arises. 
I, , ,  = 4w;,P;,/3hc’ 

Maximum value of echo intensityt 
Frequency Time when 
of echo echo arises p > o  - 1 < p < o  p < - 1  

2 Subscripts ab and bc should read ba and cb respectively in entries under this heading 
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0.25 
- 0.20 

0.1 5 
0.10 

--- 0.05 
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0 n 2n 3n 4n 0 n 2n 3n 4n 

0 0' 

Figure 4. The distribution of the numerical values of Air,,  Ai:*, A:2 +B)r, and A;: +B,rs indicating 
the change of the intensity of photon echoes as a function of the areas of the incident optical 
pulses. (a) The value of A$z,  as a function of the areas for the first optical pulses, 8 and 4. (6) 
The values of A;:, as a function of the areas for the second optical pulses, 8' and 4'. (c )  The 
values of A:2+B)r. as a function of the areas for the first optical pulses, 0 and 4. (d )  The value 
of A{ i+6)z ,  as a function of the areas for the second optical pulses, 8' and 4'. 

Equations (34a) and (34b) also show the polarization characteristics of the echo 
radiation. What is evident from these equations is that the polarization of the anomalous 
echoes is affected by the exciting pulses with frequency different from that of the echoes, 
while the polarization of the normal echo at t = 27, agrees with the result given by 
Abella et a1 (1966) for the two-level system. 

6. Propagation direction of photon echoes 

Until the previous section, we analysed the echo formation in the three-level system 
whose dimension is small compared with the excitation wavelengths. This means that all 
particles feel the exciting optical fields at the same time. 

In this section we consider the system with dimension larger than the wavelength, but 
smaller than the coherence length of the spontaneous radiation. In such a large volume 
case, we must take into account the fact that there exists a difference in arrival time of the 
pulses at the particles. That is, equation (22) should be rewritten as follows : 
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where 

and kb, and kcb are the wavevectors of the exciting pulses. 
Assuming, for the sake of simplicity, that the polarization directions of the exciting 

pulses are all parallel, the total electric-dipole moment considering the phase difference 
among the particles can be written as 

(Ppuk,,e(t)) = ( Jvmm dx) Tr(Ppukpveo(t)) dx) 3 (39) 
av 

where 

Ppvk,,, - - &ppv(Rpuk,,veli+ Rpvk , ,v sZ j )  (40) 

and ( . . . ),, means the averaging over the spatial distribution of particles. 
Hence we obtain 

(Pbcakb,,) = &Pb,N[ -A , r~A;r*G(ccb , ( t -2r s ) ) ( cos { (kb ,e -2kb ,+kb , )  ' r})av  fA(2+!3)r,  

A ; Z  +p)r,G(ccbo{t - (2 + P ) r s } )  (CoS{(kboe -%a +kb, -&b +kc,) * r})av 

+p)rSA;1 + pp,G(abcl{t -(l + P ) ' s ) )  (cos{(kbae -kb,-k:b +kc,) '})a" 

- /?)rsA;l -p)r,G(aba{t -(l - P b s > )  (CoS{(kboe -kba +&b -kcb) ' '})a" 

+ A - p r S A ' - p r , G ( a b , ( t + P T s ) ) ( C o S { ( k b a e  -kbo+k:b-kcb) * r})avl  sin 

(414 

and 

( P c b k c b c )  = & P c b N [ - g Z r ~ ~ Z i , G ( c c c b ( t - 2 T s ) ) ( C o S { ( k c b e - 2 k ~ b + ~ c b )  r } ) a v  

+ g(Z + p -  l)rsB;2 + p -  1)rsG(acb{t-(2 + b-  'bs}) (CoS{(kcbe - 2k:b + kc, 

- k b ,  + kba) * r})av + B(l + p -  l)rsgil + 0 -  l)rsG(cccb{t - (l + P -  ' ) T s } )  

(CoS{(kcbe - k:b - kbo + kbo) ' r }  >a, + g( 1 -a -  l ) rSBi  1 - D - l ) r s  

G(acb{t-(l - P - l ) T s } ) ( C o S { ( k c b e - k k : b + k b , - k b o )  r})av  

+ B - p - l r , B - p - l r , G ( a c b ( t f P -  ' ~ ~ ) ) ( ~ ' ~ { ( ~ c b e - ~ c b + ~ b , - ~ b n )  r})avl  

x sin Wcbt, (41b) 
where kboe and kcbe are the wavevectors of the photon echoes. 

From equations (41a) and (41b), we can find that the echo radiation is generated 
coherently in the particular direction. While the propagation directions for the normal 
echoes at t = 2rS agree with the results for the two-level system, the wavevectors for the 
anomalous echoes are determined by the four wavevectors at two different frequencies 
through the coherent coupling effect associated inherently with the resonant three-level 
system. 
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In a similar way, we can also analyse the propagation direction of photon echoes at 
the sum frequency U,, . What is evident from table 2 is that the complete phase matching 
can be realized for special combinations of the wavevectors even if the exciting pulses 
are non-parallel ; this is found for the first time in our analysis on the three-level system. 

Table 2. Summary of the propagation direction ofdoubly resonant photon echoes in a three- 
level system with the frequencies wbar web and @<,,. The propagation directions of the anomal- 
ous echoes depend upon the wavevectors of the exciting optical pulses with frequency different 
from that of the echo 

Frequency Time when Direction of 
of echo echo arises echo propagation? 

ba 2% - kdb 

(2 + 815, 
(1 + P)7, 

(1 - 817, 

=bb- kob + kbc- kbc 

kbb+ 'bc- k 6 c  

kbb + k b c -  kbc 

kab + kbc- kbc - B7, 

25, 2kbe-kbc 

(2 + 8 -  l)TS 
(1+8- ' )7 ,  kbc+kab-kbb 

(1 - B -  l)T, kbc +kbb-kob 

- p - ' 5 ,  kbc+kbb-kob 

2kb, - k6, + k b b  - k,, 

we, 2% kab+ % -  kbc 

(1 + ( I  + P ) - ' ) T ,  2 k b b - k , , + k L c  

{ 1 + (1 + 8- '1- '}rS 2 6 , -  k b c  + k b b  

khb + k,, 
(1 + 8- '1- l ~ s  

(1 +s)- l T S  

kab f kbc 
~~ ~ _ _ _ _ _  ~ ~~ 

2 Subscripts ab and bc should read ba and cb respectively in entries under this heading. 

7. Discussion and conclusion 

The results in the previous section that the anomalous echoes are produced at times 
different from 22,  is puzzling at first, since it can not be understood by the well known 
explanation that the second excitation pulse reverses the dephasing process so that the 
system rephases, at the same rate at  which it dephased, to emit an intense burst of light 
called the photon echo. This remarkable result for the three-level system can be inter- 
preted as follows ; the transitions from la)  to Ib) and from Ib) to IC) (or transitions from 
Ib) to la) and from IC) to ( b ) )  correlate quantum mechanically with each other since the 
raising operators Rbo+ and Rcb+ (or lowering operators Rb,- and Rcb-) do not commute, 
so that the unitary operator exp{i(6Rb,, + 4Rcbl)) in equation (22) causes the transitions 
between la) and IC) having no connection with the electric dipole-moment operator for 
the transition a-c. 

For example, we consider how the echo at frequency ab, appearing at t = (2 + P ) T ,  is 
formed. This echo is derived from the third term in equation (30a) and the first term in 
equation (30b), which indicates the following process. The first two pulses induce the 
matrix element (c lp la)  from (alpla) and this element changes its phase at the rate 
Amb,+ hCb. Then, the second pulses transform this into another matrix element 
(alplb), which changes its phase at  rate -Awb0.  This situation directly leads to the fact 
that the dephasing rate is 1 + p times the rephasing rate, so that'the echo arises at  (2  + p ) ~ ,  
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after the first pulses. Other anomalous echoes can be also explained by similar considera- 
tions. 

In conclusion, we have made the theoretical analysis on the photon echo characteris- 
tics associated with the resonant three-level system by taking into account the inhomo- 
geneous broadening of the spectral lines. Novel and interesting features are found 
quantitatively with respect to the echo formation time, intensity, polarization together 
with the propagation direction. They are expected to be examined by the well arranged 
experiment. These results also seem to shed light on new applications in the field of 
optical information processing as well as spectroscopy in the time domain. 
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